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1. PRELIMINARY CONCEPTS

1.1. Introduction

The subject matter of this work ic minimax parameter estimation.
In the presen. chaprer we will introduce some basic roncepts and definitions
from the theory of parameter estimation and through these arrive at the
results and techniques which we will use to search for minimax solutions to

parameter estimation groblems.

1.2. Parameter Estimation Theory

In general a parameter estimation problem can be stated as fcliows:
Let Z be a random variable having a probability distribution function
Fé(z). The subscript in the distribution function indicates that it depends
on an unknown: parameter 8., In keeping with the standard literature on the
subject a canonical personage usually identified as the statistician or
Gecision maker is introduced to facilitate the exposition of the problem.
The statistician is interested in estimating the unknown parameter © from a
single obsarvation of the random varizble Z. More specifically a function
6, called a decision rule or an estimator, is to be designed so that the
random variable #(Z) provides the statistician with a "good guess" or
e«stimate of the value of the unknown parameter 0. At this point we must
address the fellewing problem: How shall we evaluate the goodness of a
given estimate? This i3 ihe question of choosing a criterion for estimation.
In this work we shall cgnsidev the loss function approach to parameter

estimation and apply the mimimax criterion. This approach and criterion are




3
% & Definition 3: Two decision rules are equivalent if they have the same %
T conditional risk function. E
Definition 4: A decision rule & is said to be a Bayes rule if for every .
§ other rule v :
it E
T e{rl6,91} < E{xY,67} (1.2.4)
- :
T wkere the average is taken over a prior distribution A(®) for 6, that is, 6
o
minimizes the average risk.
§ Definition 5: ¢* is said to be a minimax decision rule if for all other
5 _ rules §
) sup r[8%,68] < sup r{6,9]. (1.2.5)
- 6en 0eQ2
- Trat is 6% infimizes sup r[§,8].
- 129
3 ;g 1.3 The Relation of Game Theory to Minimax Estimation

Minimax estimation theory is closely related tc the theory of two-

pers.n zero-sum games. The elements of a two-person zero-sum game are:
(1) The two players, usually identified as the Statistician and
Nature.,

(ii) The Kernel that represents the pay-offs of the game.

T
o= " I P sy Tuedh
et L Ut L

The Kernel is a function of two variables each of which is controlled by one
of the players, When a minimax estimation problem is considered as a game,

the kernel of the game i{s identified with the average risk
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g £[6,8] dr (8). (1.3.1)

The two variables are the decision rule § controlled by the Statistician and
the distribution ) (8) controlled by Nature.
The rules of tiie game are such that the Statistician looks for a

decision rule 8 that minimizes

sup | £[6,87 d\ (@) (1.3.2)
L

while Nature tries to find a distribution A (8) that maximizes

inf | r[6,0] dA®). (1.3.3)
5§ 0

Such a distribution is called a least favorable prior distribution,

It can be seen that

Sup f r[6,6] dA(8) = Sup r[6,6], (1.3.4)
A0 oen

so that if the Statistician succeeds in the game he has found a ininimax
solution for the estimation problem.

The fundamental theorem in game theory, the minimax theorem, states
that ">r certain conditions

inf sup | r[6,0] d\(8) = Sup inf [ £[¢,0] dA(9). (1.3.5)
§ A Q A s Q

Now if the minimax theorem holds and a least favorable prior distribution
exists, then any minimax rule is Bayes with respect to this prior
distribution, See [1] for an extended discussion of Bayesian decision theory

and the minimax criterion.




1.4, Preliminary Lemmas and Results

Lemma 1: A Bayes rule is admissible if it is unique up to equivalence.

Precf: (see [1], p. 60).

Lemma 2: (Wald). Let 6y be a Bayes rule with respect to r[5§,0] and A (9).

Assome that max rféx,e] = T exists. Define é:
8EN i

T = {feeq : rta)\,e] = T}. 1.4.1)

Assume that A[Tk] = 1. We now have:

1) 5x is minimax

(ii) X is a least favorable prior distribution.

Precf: (i) (by contradiction). Assume there exists a decision rule §, and

& number ¢ > 0 such that

max {r[6.6] +c} < max r[éx,e] (1.4.2)
8¢ Beq

tat then

J1e06,61 +c}ah @) < max(x[6,8] +c}
‘ 8¢ (1.4.3)

< max r[6l,6]
8€N

:nd  mex r{6},6] =T = f r[&K,G] d\(8), since )\ assigns probability 1 to
gen ) Q

Th Trerefore

ol htabtitnts e

Jr[8,61 @) +c< | rls, ,614\ . (1.4.4)
0 0

N
g o




This last inequality contradicts the ascumption that 51 is a Bayes rule and
we therefore conclude that GK is minimax.

(ii) (By contradiction)

Assume there exists another prior probability measure u and a number C > 0

4 .oy such that

. inf [ r[5,6] dA (@) +c < inf | £[6,0] du(®) (1.4.5)

5 0 5 Q

but
J x08,,6) au() > ine [ £5,07 du(e)
Q § Q

S > inf [ £[6,0] A @) +c = T+e  (L.4.6)
5 ' 5 0
3 5, so that
J r(5,,8] du@> FT+e > F (1.4.7)
0

which is a contradiction; therefore \ is a least favorable prior

distribution,

N
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2. MINIMAX PARAMETER ESTIMATION UNDER GENERALIZED QUADRATIC
LOSS WITH A COMPACT PARAMETER SPACE

2.1. Introducticn

The estimation problem we shall comsider in this chapter belongs

to a general class of problems that can be described by the following model:

Let z = 8 +v where 0 €0, Q is some specified parameter space
contained in En, and v is a zero-mean Gaussian random vector with known
positive definite covariance matrix L. We want to find a minimax estimator
for the unknown parameter 6. It is known [2,3,4] that the existence of
minimax estimators and the structure of these estimators when tney exist is
strongly dependent on the structure of the problem which is affected by the
underlying loss function, the parameter space {1 and the class of allowed
decision rules.

When the loss function is the Standard Quadratic Loss funct’on,

L [8(2),8] = [8(z) -] 'cls(=z) -€] ,
and the parameter space (I is En, a minimax solution for this problem is
§(z) = z; see [1], p. 170 for further details.
The standard quadratic loss function is generalized by adding to

it a quadratic term in ¢ obtaining
L1[6(z),6] = [6(z) -0]'c[6(z) -6] - 8'DM.

This loss function forces Nature to compromise between a gain due to
increasing the Statistician's estimation error and a loss which is equal

to the square of the norm weighted by D. For an unconstrained parameter

PIRYT I m.m»min.|I(ihwllnu.nl-l(:,r'iy(liillh“mm{lsw%m
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space, i.e. Q= En, this problem was solved by Basar and Mintz
[21.
The parameter 6 can be restricted to reside within a known

compact subset of En, for example a hyperellipsoid defined by

2

Q={6¢E": G'Gege,e2>0,G2_Q}.

In this case a linear minimax estimator for 6 under the standard quadratic
loss function was found by Mintz [3]. We will be considering here the problem
of finding a linear minimax estimator under a generalized quadratic loss
function and will constrain the parameter 6 to reside within a known

Lyperellipsoid in E.

2.2. Problem Statement

Let z = 6 +v where v is a normal zero-mean random vector with
known positive definite covariance matrix ¥ and 6 is an unknown element of

s> known hyperellipsoidal subset of E" denoted by Q and defined by

0 ={oeE™ : 0'D,0 < ’; &* >0, D, > 0} (2.2.1)

We wish to determine a minimax estimate §(z) for © with respect to the

generalized quadratic loss function

L{6(2),0] = [6(2) -0]'c[8(z) -6] -0'D,6 (2.2.2)

where C > 0 and D, > 0, subject to the restriction that & be a linear rule.
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2.3. Solution
Define
A, -1 -1
FA,@) = (A+Z) "ZCZT(A+2) -D, -aD, (2.3.1)
with
A>0 and a>0. (2.3.2)
Le: A and o denote any solution to the matrix equation:
I (\*,0")\* = 0 (2.3.3)
such that
r(\*,0*) <o (2.3.4)
and
Te[DA*] < €. 2.3.5)

Theorem I:
(1) 1f T'(A,@) is defined by (2.3.1) and (2.3.2) then there exists a

.ovariance matrix A* and a scalar o > 0 that satisfy (2.3.3) and (2.3.4).

and
* _ % 2 2
cither (a) & =0 and Tr[DZA 1= e . <e
* %* 2 2
or (b) & >0 and Tr[DzA 1= e =e.
(21) 1f §(2) is defined by
8% (z) = A¥(A* +3) 1, (2.3.6)

then 6%(z) is a linear minimax estimate for 6. A proof of part (i) of the
mzin theorem may be obtained by generalizing the proof that appears in

Apvendix 1 of [3]. The essential modification of that result needed to
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show part (i) is obtained by replacing J(A,\) as defined in Lemma 2 of [3]

by

J(ALN) 4 Tr{[ (I-A)'C(I-A) -Dl]A} + Tr{CAZA']. (2.3.7)

We note at this point thnat the matrix D_ of this present paper corcesponds

2
to D of reference [3]. Since the modified proof is very similar a complete
discussion will be omitted. We also note that the last two assertions in
Appendix I of [3] do not apply in the present problem due to the difference
in the structure of the loss function,

A proof of part (ii) of Theorem I is obtained using Lemma 2 of
Section 1.4, We need a prior probability distribution for 6 which we define

as follows:

Assume Tr[DZA] = ei < ez, where A > 0 and consider the matrix
DEADE, where DE is the unique symmetric positive definite square root of
D). Assume T diagonalizes DJ;ADE, that is
S = 'E'D%AD% T = diag(s,s.++55_). (2.3.8)
2 72 1’°°°*"n -

Let m denote an n~dimensional random vector with independent components

denoted by mo i=1,...,n whose distribution is defined by:
Pr{m, = s;‘} = 21 , Pr{mi = -(s’i)} = %, (2.3.9)

Tre random vector m takes on Zk values with equal probability, where k is
the rank of A. Let w[A] denote the probability measure defined by the
distribution of the random vector y & D;_%Tm. We note that the support of

the measure B[A] lies entirely in the boundary of' 0¥, a hyperellipsoidal
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subset of E" contained in Q and defined by
Q" = {yeg" 1Yy < ei < ez}. (2.3.10)

This assertion follows from the fact that for each of the 2k equally likely

-%

values of m the vector y = D2 Tm lies on the boundary of (* since

y'Dy m‘T'D;%DZD;%Tm =m'm

2 2
s, = Tr[DEADg] = Tr[DZA'] =e <e. (2.3.11)

]
L B}

i=1

Further, we note that E[y] = 0 and

19 _ ’% [} "'25 — ‘% ] ‘%
Elyy'] = E[Dz T mm' T'D, 7= D, “IST'D,
= '% ' % % ' '%
D, T T DZADZT D,
=Ah . (2.2.:2)

Noo, let Ao denote a prior probability distribution for 6 such that

& ~ w[A]. For this prior distribution a Bayes estimate is given by
6 (2) = Ah+5)7lz, (2.3.13)
)

Tris follows from the fact that the loss function is quadratic in the
estimation error and therefore within the class of linear rules for a prior
distribution with covariance A the rule defined by (2.3.13) minimizes the
average risk. In what follows we will show that \* = u{A*] and 6% (z2)

defined by (2.3.6) satisfy the conditions stated in Lemma 2 Section 1.4
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and thus establish part (ii) of the main theorem. We need an expression
for the conditional risk function:
w5, ,0] = E{1l5, (2),076}
o o}
= 0'[(A+3) ez a +5y7L -D,10
- -1 -12
+ ax[(A+%) TACA(A+Z) T . (2.3.14)

The fact that \* and 6*(2) satisfy Lemma 2 of Section 1.4 is established
in several steps as follows:

Step 1: OUbserve that for all § of the form §(z) = A(A-+Z)-1z. A >0 the
maximum of the conditional risk function

T = max r[3,8]
0EQ

exists since r is continuous in 6 and Q is compact.
Step 2: First consider the case when the solution to (2.3.3) and (2.3.4)
satisfy condition {(a) of part {i) of the theorem. In this case we ncte that

the conditional risk function can be written as:
r[£%,6] = ' T(1,%,0)8 + Tr{'([\*-f-Z)-lA*CA*(A* +',:)“1>:], (2.3.13)

then (2.3.4) implies that T defiued by

)‘*s

T)‘* = {GEQ : r[a*.B] = 7},

coincides with the null-space of I'(4*,0), that is

Ty % = N[ (%,0)]. (2.3.16)
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When case (b) of part (i) is in force the conditional risk
function can be written as
r[6%,0] = 0'T (A",0*)8 + a™8'D,0
+ el @ +5) " Irea* oar +3) 71w, 2.3.17)
It is obvious that for this case
Tyx = NI (%,0%)] 120 (2.3.18)

where ) = {0 €E” : G'DZG = ez}. We next prove that in cases (a) and (b)
R*ETX*] = 1.

Step 3: In both cases considered in step 2, TA* is a subset of the null-
space of F(A*,a*). We will now prove that \* assigns probability one to

NI (A*,0*)]. From (2.3.4) we conclude that 8'T (A*,0%)8 < 0 but

E{6'T (A*,0*)8} = E{Tr[6'T (A*,0*)81]}
= E{Tr[l (A*,0*)00' ]}
= Tr{l (A*,0* )A¥] (2.3.19)
end (2.3.3) implies that
el (\*,0%)A*] = 0 . (2.3.20)
So 'we have
9'T (\*,0*)8 < 0 (2.3.21a)
and
E[9'T (A*,a*)8] = 0. (2.3.21b)
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This allows us to conclude that A* assigns probability one to the null-
space of ' A¥,0*). For the case where A* and o* satisfy (a) in part (1)
this proves that x*[Tk*] = 1.

For the situation in which case (b) of part (i) is in force, we
note that the discussion following (2.3.10) establishes that A¥ = (a*)
assigns probability one to the boundary of 0%, which coincides with Q in

this situation, since Tr[DZA*] = ez- Hence
A¥(50] =1 and A¥[NC@*,0*))] =1

and therefore we conclude that Tk* as defined by (2.3.18) receives
probability one from A¥. We note at this point that we have a prior
prcbability distribution 2*, a Bayes estimator 6%*(z) with respect to

%* and t[5,6] and \* assigns probability one to the set T, , where r[6%,0]

A
attairs its maximum value, i.e. ¥. Making use of Lemma 2 of Section 1.4

wz conclude that
* %* -1
" =AW +X) Tz

is a linear minimax estimate for 6. This finishes the proof of part (ii)

of the main theorem.

2.4, The Scalar Case

The unidimensional version of the problem stated in Section 2.2

will be treated in this section. This scalar case admits an explicit

solution and in obtaining it insight is gained into the structure of the

selution to the vec-rc case. We will state the problem and study its
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solution in what follows. Let z = 6 +v where v~ N[O,oz] and 8 is an
unknown element of Q defined by 0 = {6 €E' : 82 < e2, e2 > 0}. We wish
to determine a linear minimax estimator §(z) with respect to the loss
function:

L[5(2),8] = c(5 -8)° - do> (2.4.1)

where ¢ > 0 and d > 0. For this loss function the conditional risk function

for linear decision rules of the form 6 = az is given by

2

r{6,8]) = [c(a-l)2 —d]92 + ca 02. (2.4.2)

There are two cases to consider depending on the relative magnitudes of ¢
and d,

Case 1: c¢c-d < 0

For this case an appropriate prior distribution for 8 is \*(8) such that
8 =) with probability one. The average conditional risk with respect to

3
P s

E,+{r[5,6]} = cac’. (2.4.3)

A Bayes rule is one that minimizes (2.4.3) which turns to be positive

exeept when a =0 so that

b*(z) = 0 2.4.4)

is the required Bayes rule. Using the rule defined by (2.4.4) in (2.4.2) thke

conditional risk function results

£[5,0] = [c - d16° (2.4.5
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since c=d « 0 T = 0 occurs when ¥ = 0, This is the point that receives
probability one from A* and therefore £¥(z) = 0 is minimax according to

Lomma 2 in Section 1.4.

o2 > czc«/;i - 1, (2.4.6)

then 2% assigning equal probability to

%

8 = +q= ic’Q - 1) (2.4.7)

a0

1s an appropriate prior distribution. With this prior distribution the

average conditional risk is
g {rl5,57) = lc(a-1)% - a)q® + ca’o?. (2.4.8)

hv clementary calculus the value of a that minimizes (2.4.8) is
a* = —l— (2.4.9)

and thi: corresponding Bayes rule results

= gty (2.4.10)

tse of thiz rule in the conditional risk yields a constant value independent

uf the value of & in 27, i.e.,
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This particular sitvation characterizes &§* as an equalizer rule, i.e. one
that produces a constant conditional risk. 1In this case Ty* is identified
with the whole parameter space (!, the condition of Lemma 2 Section 1.4 that
] be one is thus trivialiy satisfied. We note that all the conditions
of Lemma 2 have been established and we conclude that in this case 2 under
the condition defined in (2.4.6) the decision rule defined by (2.4.7),
(2.4.9), and (2.4.10) in a minimax rule.

On the other hand, if condition (2.4.€) is not satisfied but
e <o’ WS- 1) (2.4.11)

we define a prior probability distribution for § by letting A* assign equal

rrobabilities to € = +e, that is:

Pr{6 = e] = Pr{§ =-~e} == . (2.4.13)

YT

With this probability distribution the average conditional risk becomes

. 2 '
E>*{r{5,e]} = {c(a-1) -d]e2 + cazcz. (2.4.13)

By rcasoning similar to that which lead to (2.4.9), the value of the

multiplier a* defining the Bayes rule for this case is

2
a* = 5 5 (2.4.14)
e +c
and the Bayes rule is
g% = g%z (2.4.15)

The conditional risk function for this Bajyes rule is

WA 2l ol o
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r[6%,6] = [c(a*~1)% - ale” + c(a*)%e?. (2.4.16)

The conditional risk is quadratic in © and the coefficient of the quadratic
term is positive. This assertion follows from equation (2.4.14) defining a*
and from condition (2.4.11). The maximum value of the conditional risk

occurs then at the extreme points of the parameter interval, i.e.

Tyx = {e,e]. (2.4.17)

Obviously l*{T)*] = 1, and according to Lemma 2 of Section 1.4

is a linear minimax estimate for 6.

2.5. Remarks

The main theorem in Section 2.3 provides us with a linear minimax
cstimate of the unknown parameter & with respect to the generalized quadratic
loss function defined in Section 2.2 where the parameter space is defined to
be: a hyperellipsoid 7 subset of E'. The least favorable prior distribution
which we associated with this minimax estimate is a discrete probability
distribution that has support on the boundary of a hyperellipsoidal subset of
En, which we denoted by 7, contained in the original hyperellipsoid Q. The
minimax estimator, the least favorable prior distribution, and the hyper-
ellipsoid O* are all determined by the solution to the algebraic matrix

equations stated in part (i) of the theorem of Section 2.3,

2
E]
]
El
=
E]
3
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When the restriction imposed on the parameter that it reside in
this hyperellipsoid is lifted, Basar and Mintz [2] showed that the minimax
estimate, over linear and nonlinear rules, is a linear estimate and the least
favorable prior distribution is a zero-mean normal distribution. A closely
related problem solved by Mintz [3] in which the loss function is the
standard quadratic loss function and the parameter space is a hyper-
ellipsoidal subset of E" exhibits a similar structure in the least favorable
prior distribution to the problem treated here, with the difference that in
thiat case the support of the discrete prior distribution lies always on the
boundary of the parameter space. The class of decision rules considered in

[31 is also restricted to linear rules.

2.6. A Generalized Model

We consider now a more general observation model. Let z = x+6 +v,
wheee % and v are independent zero mean Gaussizn random vectors with positive
definit- covariance matrices Q and ¥ respectively. The resulfs obtained in
S« ticn 2.3 can be extanded to find a linear minimax estimate for u 4 X +6

under a generalized quadratic loss function given by

L{8(2),u] = (5-u)'c(5-u) -G'Dle.

Tra unknown parameter 8 is an element of Q = {BEIJ‘: 9'D26 < e2, e2 > 0},
Thke fcllesing theorem provides tle desirad minimex estimate.
Theorem 11
Define
1y -1, 1
FA,a) = A+Q+3) "ZCS(W+Q+1) -DI - °’D2‘ (2.6.1)

e Ty
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Let A* and o denote any solution to
[\ ,0*)A* = 0 (2.6.2)
F\*,a*) < 0 (2.6.3)
“ 2 .
Tr (DA%) < e (2.6.4)
where
A* >0 and o* > 0. (2.6.5)
with this definition and notation we conclude that:
(i) There exists a pair A* and o satisfying (2.6.2) through
(2.6.5), and either
¢ =0 and Tr{DzA*] = ei g.ez
vr 2 2
o >0 and Tr[DZA*] =e =e.
(ii) The decision rule §* given by
s%(z) = (\F +Q)(\* +Q+3) 1z (2.6.6)

1s a linear minimax estimate for u. The details of the proof are omitied
tere since it is essentially the same as the proof of Theorem 1 of Section
2.3,

A further extension of the work presented in this thesis can be
used to determine a linear minimax terminal state estimate for a linear
plant subject to an energy constraint with a generalized quadratic loss

function as the underlying loss function.
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